Google Cloud Data Model Lifecycle
┌────────────┐
│ 1. DESIGN │
└────┬───────┘
│
▼
┌──────────────────────────────┐
│ • Understand business needs │
│ • Choose schema (Star, 3NF) │
│ • Identify data sources │
│ • Plan storage (BQ, GCS) │
└────────┬─────────────────────┘
│
▼
┌─────────┐
│ 2. BUILD│
└───┬─────┘
▼
┌────────────────────────────────────┐
│ • Ingest data │
│ - Batch: Dataflow, Data Fusion │
│ - Real-time: Pub/Sub + Dataflow │
│ • Transform using SQL, DBT │
│ • Store in BigQuery │
│ • Model (Facts, Dimensions) │
└────────┬───────────────────────────┘
│
▼
┌──────────┐
│ 3. TEST │
└────┬─────┘
▼
┌────────────────────────────────────────┐
│ • Unit test SQL models │
│ • Data quality: DBT/Great Expectations│
│ • Performance: Partitioning, EXPLAIN │
│ • Integration test entire pipeline │
└──────────┬─────────────────────────────┘
│
▼
┌────────────┐
│ 4. DEPLOY │
└────┬───────┘
▼
┌────────────────────────────────────────┐
│ • Git + Cloud Build for CI/CD │
│ • Deploy DBT models to BigQuery │
│ • Schedule with Cloud Composer │
│ • Monitor with Stackdriver Logging │
└────────────────────────────────────────┘
No comments:
Post a Comment