Here’s a complete explanation with design + implementation steps for building ELT pipelines using DBT (Data Build Tool) and Snowflake, tailored for interview or project showcase.
✅ Project Overview: ELT Pipeline using DBT and Snowflake
π― Goal:
To build an end-to-end ELT pipeline that:
-
Extracts raw data into Snowflake
-
Transforms it using DBT models
-
Loads curated data into Snowflake data marts
π§± Architecture Diagram:
┌────────────┐ │ Source DB │ (CSV, API, etc.)
└────┬───────┘
│
[Extract & Load]
│ (Airbyte/Fivetran/Custom Python)
▼
┌───────────────┐
│ Raw Snowflake │
│ Schema │ ← EL
└────┬──────────┘
│
[Transform - DBT]
▼
┌─────────────────────┐
│ DBT Staging Models │ → Clean + Cast
├─────────────────────┤
│ DBT Intermediate │ → Joins + Enrich
├─────────────────────┤
│ DBT Mart Models │ → BI-ready tables
└─────────────────────┘
│
▼
┌────────────┐
│ BI Tools │ (Power BI / Tableau)
└────────────┘
⚙️ Tech Stack:
-
Snowflake – Cloud Data Warehouse
-
DBT (Core or Cloud) – Data transformation tool
-
Python/Airbyte/Fivetran – Data ingestion
-
Power BI / Tableau – Optional for reporting
π ELT Pipeline Steps
πΉ 1. Extract & Load (EL)
Use Python / Airbyte / Fivetran to load data into raw Snowflake schema:
# Example Python + Snowflake Connector
import snowflake.connector
import pandas as pd
df = pd.read_csv("orders.csv")
conn = snowflake.connector.connect(
user='your_user',
password='your_pass',
account='your_account'
)
cursor = conn.cursor()
cursor.execute("USE DATABASE analytics; USE SCHEMA raw;")
for _, row in df.iterrows():
cursor.execute(f"""
INSERT INTO orders_raw (order_id, customer_id, amount)
VALUES ('{row['order_id']}', '{row['customer_id']}', {row['amount']});
""")
πΉ 2. Transform using DBT
π️ Project Structure:
dbt_project/│
├── models/
│ ├── staging/
│ │ └── stg_orders.sql
│ ├── intermediate/
│ │ └── int_order_enriched.sql
│ └── marts/
│ └── mart_sales_summary.sql
├── seeds/ (optional)
├── dbt_project.yml
└── profiles.yml
π§± Example DBT Models:
✅ staging/stg_orders.sql
{{ config(materialized='view') }}
SELECT
order_id,
customer_id,
CAST(amount AS FLOAT) AS amount,
CAST(order_date AS DATE) AS order_date
FROM {{ source('raw', 'orders_raw') }}
✅ intermediate/int_order_enriched.sql
{{ config(materialized='view') }}
SELECT
o.*,
c.customer_name,
c.region
FROM {{ ref('stg_orders') }} o
JOIN {{ ref('stg_customers') }} c
ON o.customer_id = c.customer_id
✅ marts/mart_sales_summary.sql
{{ config(materialized='table') }}
SELECT
region,
COUNT(order_id) AS total_orders,
SUM(amount) AS total_sales
FROM {{ ref('int_order_enriched') }}
GROUP BY region
⚙️ DBT Commands
# Initialize DBT project
dbt init dbt_project
# Run models
dbt run
# Test data quality
dbt test
# Generate documentation
dbt docs generate
dbt docs serve
π Optional: Power BI or Tableau
Connect Snowflake curated tables (marts
) to visualize metrics like:
-
Sales by Region
-
Monthly Orders
-
Churned Customers
✅ Key Benefits for Interview:
π What to Highlight:
-
Modular SQL with ref() for maintainability
-
Version control and CI/CD-friendly (GitHub Actions)
-
Data quality with
dbt test
-
Scalable architecture with raw/stage/mart layers
-
Explain raw → curated flow
π Resume Bullet Example:
πΉ Designed and implemented a modular ELT pipeline using DBT and Snowflake, transforming raw customer and order data into business-ready marts, improving query performance and reducing manual SQL effort by 60%.
Would you like:
-
A sample GitHub repo or code export?
-
A PowerPoint version of this pipeline?
-
Integration with Airflow or CI/CD?
Let me know how summarize for easy explanation for interview remember
ChatGPT said:
Here’s a simplified summary to easily explain ELT using DBT and Snowflake in an interview — short, clear, and structured:
✅ ELT Pipeline using DBT and Snowflake – Interview Summary
π― Objective:
To move raw data into Snowflake and transform it using DBT into clean, analysis-ready tables.
π§± 3-Layer Architecture (ELT)
1. Extract & Load (EL)
-
Use tools like Python, Airbyte, or Fivetran
-
Load raw data into Snowflake’s raw schema
“We first load raw data (CSV/API) into Snowflake tables using automated scripts or connectors.”
2. Transform with DBT (T)
Use DBT to create three layers of models:
πΉ Staging Layer
-
Cleans column names
-
Casts data types
-
Applies basic filters
“This ensures raw data is readable and consistent.”
πΉ Intermediate Layer
-
Joins multiple tables
-
Adds business logic or derived columns
“We enrich the data here for further analysis.”
πΉ Mart Layer
-
Final summary tables for BI tools (e.g., sales by region)
“This layer is optimized for dashboards and reporting.”
⚙️ DBT Key Features
-
ref()
manages dependencies -
dbt test
for data quality checks -
dbt docs
for auto-generated documentation
π‘ One-liner for Interview
“I built a scalable ELT pipeline where raw data is loaded into Snowflake, then transformed using DBT into clean, reusable models organized into staging, intermediate, and marts layers.”
π§ Tips to Remember
Layer |
Purpose |
Example |
Raw |
Just
loaded data |
CSV or
API dump |
Staging |
Clean +
format |
Rename
columns, cast data |
Intermediate |
Logic +
joins |
Add
customer name to order |
Marts |
Final
summary tables |
Sales
by region, churn |
No comments:
Post a Comment