Thursday, June 5, 2025

ELT Pipeline using DBT and Snowflake

 Here’s a complete explanation with design + implementation steps for building ELT pipelines using DBT (Data Build Tool) and Snowflake, tailored for interview or project showcase.


Project Overview: ELT Pipeline using DBT and Snowflake

🎯 Goal:

To build an end-to-end ELT pipeline that:

  • Extracts raw data into Snowflake

  • Transforms it using DBT models

  • Loads curated data into Snowflake data marts


🧱 Architecture Diagram:

┌────────────┐
│ Source DB │ (CSV, API, etc.) └────┬───────┘ │ [Extract & Load] │ (Airbyte/Fivetran/Custom Python) ▼ ┌───────────────┐ │ Raw Snowflake │ │ Schema │ ← EL └────┬──────────┘ │ [Transform - DBT] ▼ ┌─────────────────────┐ │ DBT Staging Models │ → Clean + Cast ├─────────────────────┤ │ DBT Intermediate │ → Joins + Enrich ├─────────────────────┤ │ DBT Mart Models │ → BI-ready tables └─────────────────────┘ │ ▼ ┌────────────┐ │ BI Tools │ (Power BI / Tableau) └────────────┘

⚙️ Tech Stack:

  • Snowflake – Cloud Data Warehouse

  • DBT (Core or Cloud) – Data transformation tool

  • Python/Airbyte/Fivetran – Data ingestion

  • Power BI / Tableau – Optional for reporting


πŸ” ELT Pipeline Steps

πŸ”Ή 1. Extract & Load (EL)

Use Python / Airbyte / Fivetran to load data into raw Snowflake schema:


# Example Python + Snowflake Connector import snowflake.connector import pandas as pd df = pd.read_csv("orders.csv") conn = snowflake.connector.connect( user='your_user', password='your_pass', account='your_account' ) cursor = conn.cursor() cursor.execute("USE DATABASE analytics; USE SCHEMA raw;") for _, row in df.iterrows(): cursor.execute(f""" INSERT INTO orders_raw (order_id, customer_id, amount) VALUES ('{row['order_id']}', '{row['customer_id']}', {row['amount']}); """)

πŸ”Ή 2. Transform using DBT

πŸ—‚️ Project Structure:

dbt_project/
│ ├── models/ │ ├── staging/ │ │ └── stg_orders.sql │ ├── intermediate/ │ │ └── int_order_enriched.sql │ └── marts/ │ └── mart_sales_summary.sql ├── seeds/ (optional) ├── dbt_project.yml └── profiles.yml

🧱 Example DBT Models:

staging/stg_orders.sql
{{ config(materialized='view') }}
SELECT order_id, customer_id, CAST(amount AS FLOAT) AS amount, CAST(order_date AS DATE) AS order_date FROM {{ source('raw', 'orders_raw') }}
intermediate/int_order_enriched.sql

{{ config(materialized='view') }} SELECT o.*, c.customer_name, c.region FROM {{ ref('stg_orders') }} o JOIN {{ ref('stg_customers') }} c ON o.customer_id = c.customer_id
marts/mart_sales_summary.sql

{{ config(materialized='table') }} SELECT region, COUNT(order_id) AS total_orders, SUM(amount) AS total_sales FROM {{ ref('int_order_enriched') }} GROUP BY region

⚙️ DBT Commands


# Initialize DBT project dbt init dbt_project # Run models dbt run # Test data quality dbt test # Generate documentation dbt docs generate dbt docs serve

πŸ“Š Optional: Power BI or Tableau

Connect Snowflake curated tables (marts) to visualize metrics like:

  • Sales by Region

  • Monthly Orders

  • Churned Customers


✅ Key Benefits for Interview:

πŸ”‘ What to Highlight:

  • Modular SQL with ref() for maintainability

  • Version control and CI/CD-friendly (GitHub Actions)

  • Data quality with dbt test

  • Scalable architecture with raw/stage/mart layers

  • Explain raw → curated flow


πŸ“Œ Resume Bullet Example:

πŸ”Ή Designed and implemented a modular ELT pipeline using DBT and Snowflake, transforming raw customer and order data into business-ready marts, improving query performance and reducing manual SQL effort by 60%.


Would you like:

  • A sample GitHub repo or code export?

  • A PowerPoint version of this pipeline?

  • Integration with Airflow or CI/CD?

Let me know how summarize for easy explanation for interview remember

ChatGPT said:

Here’s a simplified summary to easily explain ELT using DBT and Snowflake in an interview — short, clear, and structured:


ELT Pipeline using DBT and Snowflake – Interview Summary

🎯 Objective:

To move raw data into Snowflake and transform it using DBT into clean, analysis-ready tables.


🧱 3-Layer Architecture (ELT)

1. Extract & Load (EL)

  • Use tools like Python, Airbyte, or Fivetran

  • Load raw data into Snowflake’s raw schema

“We first load raw data (CSV/API) into Snowflake tables using automated scripts or connectors.”


2. Transform with DBT (T)

Use DBT to create three layers of models:

πŸ”Ή Staging Layer

  • Cleans column names

  • Casts data types

  • Applies basic filters

“This ensures raw data is readable and consistent.”

πŸ”Ή Intermediate Layer

  • Joins multiple tables

  • Adds business logic or derived columns

“We enrich the data here for further analysis.”

πŸ”Ή Mart Layer

  • Final summary tables for BI tools (e.g., sales by region)

“This layer is optimized for dashboards and reporting.”


⚙️ DBT Key Features

  • ref() manages dependencies

  • dbt test for data quality checks

  • dbt docs for auto-generated documentation


πŸ’‘ One-liner for Interview

“I built a scalable ELT pipeline where raw data is loaded into Snowflake, then transformed using DBT into clean, reusable models organized into staging, intermediate, and marts layers.”


🧠 Tips to Remember

Layer

Purpose

Example

Raw                           

Just loaded data

CSV or API dump

Staging

Clean + format

Rename columns, cast data

Intermediate

Logic + joins

Add customer name to order

Marts

Final summary tables                  

Sales by region, churn

No comments:

Post a Comment

Python using AI

  Python using AI - Prompts & Codes Tools useful for Python + AI ChatGPT - https://chatgpt.com/ Claude AI - https://claude.ai/new ...