Key Components Explained Visually:
Data Flow: [Data Sources] → [Power Query Cleaning] → [Data Model] → [Visualizations] → [Published Dashboard]
Dashboard Layout Structure:
┌─────────────────┬─────────────────┐ │ Header │ Filters │ ├─────────────────┴─────────────────┤ │ KPI Cards (4-6 metrics) │ ├─────────────────┬─────────────────┤ │ Main Charts │ Secondary │ │ (Trends) │ Visuals │ ├─────────────────┴─────────────────┤ │ Detailed Tables/Maps │ └───────────────────────────────────┘
Visual Hierarchy:
[Most Important] ↑ KPI Metrics (Big Numbers) ↑ Trend Charts (Line/Column) ↑ Breakdown Visuals (Pie/Tree map) ↑ Detailed Tables [Least Important]
Filter Relationships:
[Date Slicer] → Affects all visuals [Region Filter] → Updates maps & regional charts [Product Filter] → Updates product-related visuals
Analyze with DAX
What to say: "Create measures like
Total Sales = SUM(Sales[Amount])
andYoY Growth
."
30-Second Example Answer:
*"I build sales dashboards in 5 steps:
Source clean data,
Analyze with DAX measures,
Layout KPIs, trends, and breakdowns,
Enhance with filters/drill-downs, and
Share for real-time decisions.
For example, a dashboard with revenue cards, monthly trend lines, and a regional map—all updating when users select a timeframe."*
Pro Tip: Add a specific detail to stand out:
"I always include a ‘What-If’ parameter to let users simulate sales targets."
Even Shorter (1-Sentence)
"I transform raw sales data into interactive dashboards by cleaning, modeling with DAX, designing intuitive visuals, adding filters, and sharing actionable insights."
No comments:
Post a Comment