Friday, May 16, 2025

Bitcoin Market Analysis

## Objective

This project explores Bitcoin market trends, price volatility, and sentiment analysis to build insights and forecasting models.

## Key Features

- Cleaned and merged historical Bitcoin data with sentiment data.

- Performed trend analysis, volatility studies, and correlation checks.

- Built interactive dashboards using Power BI/Tableau.

- Modeled time series forecasts using Prophet and ARIMA.

## Tools

- Python, Pandas, Seaborn, VADER

- Power BI, Tableau

- APIs: CoinGecko, Twitter, Glassnode


## Outcomes

- Identified peak volatility zones and sentiment shifts.

- Built a simple trading signal model based on sentiment and moving averages.

- Suggested portfolio allocation strategy backed by data.


## Folder Guide

See the `/notebooks` and `/dashboard` directories for insights and visualizations.

bitcoin-analysis/

├── data/
│   ├── raw/                   # Raw downloaded data (CSV/JSON from APIs)
│   ├── processed/             # Cleaned & transformed data
├── notebooks/
│   ├── 01_data_collection.ipynb       # Collect from CoinGecko, Twitter API, etc.
│   ├── 02_data_cleaning.ipynb         # Handling missing values, formatting
│   ├── 03_eda_visuals.ipynb           # Price trends, volume, correlations
│   ├── 04_sentiment_analysis.ipynb    # VADER/TextBlob analysis on tweets or Reddit
│   ├── 05_modeling_forecasting.ipynb  # Prophet/ARIMA or ML model
├── dashboard/
│   ├── PowerBI/                # PBIX files for interactive dashboards
│   ├── Tableau/                # TWBX or TDS files
├── reports/
│   ├── presentation.pdf        # Slide deck summarizing insights
│   ├── final_report.pdf        # Detailed project report
├── scripts/
│   ├── get_data.py             # Python script for scheduled data collection
│   ├── clean_data.py
├── requirements.txt            # Python dependencies
├── README.md                   # Project overview

πŸ” Project Title: Bitcoin Market Analysis and Trend Forecasting

🎯 Objective:

To analyze Bitcoin price trends, transaction volumes, and market sentiment to identify key patterns and insights that can guide investment strategies or platform development.


πŸ‘€ Role: Data Analyst

Responsibilities:

1. Data Collection & Integration

  • Collected historical Bitcoin price and transaction data from APIs like:

    • CoinGecko, CoinMarketCap, or Yahoo Finance

    • On-chain metrics from Glassnode or Blockchain.com

  • Integrated social sentiment data (Reddit, Twitter) using web scraping or APIs.

2. Data Cleaning & Preparation

  • Processed time-series data using Python (pandas, NumPy).

  • Handled missing values, duplicates, and anomalies in transaction data.

  • Converted timestamps, standardized currencies, and ensured consistency across sources.

3. Exploratory Data Analysis (EDA)

  • Analyzed key metrics:

    • Price trends, volatility, volume, market cap

    • Correlation with macro indicators (e.g., inflation, interest rates)

  • Visualized trends using Power BI / Tableau / Matplotlib / Seaborn.

    • Time series plots

    • Heatmaps of correlation

    • Candlestick charts

4. Feature Engineering

  • Created rolling averages (7-day, 30-day)

  • Built volatility indicators (e.g., Bollinger Bands)

  • Calculated moving averages and RSI (Relative Strength Index)

5. Sentiment Analysis

  • Performed sentiment analysis on social media or Reddit comments using NLP (TextBlob or VADER).

  • Merged sentiment scores with price data to test correlation.

6. Predictive Modeling (optional but powerful)

  • Built regression or time-series models (ARIMA, Prophet) to forecast price trends.

  • Used machine learning models (Random Forest, XGBoost) for price movement classification (up/down).

7. Dashboarding & Reporting

  • Built an interactive dashboard in Power BI or Tableau to present:

    • Real-time price and volume changes

    • Sentiment vs. price correlation

    • Predictive signals and historical patterns

  • Generated insights and shared actionable reports with stakeholders or team members.

8. Business Impact

  • Identified ideal buy/sell signals.

  • Helped model future market behavior under various economic conditions.

  • Provided data-driven insights for investor awareness or exchange platform optimization.


🧰 Tools & Technologies Used

CategoryTools/Technologies
Data CollectionPython, APIs, Web Scraping
Data WranglingPython (pandas, NumPy)
VisualizationPower BI, Tableau, Matplotlib, Seaborn
ModelingScikit-learn, Prophet, ARIMA
Sentiment AnalysisTextBlob, VADER, NLTK
Version ControlGit, GitHub

πŸ“Š Deliverables

  • Cleaned and structured dataset

  • Insightful EDA visuals

  • Time series model forecasts

  • Power BI or Tableau dashboard

  • Project documentation/report (Jupiter Notebook or PDF)


No comments:

Post a Comment

Python using AI

  Python using AI - Prompts & Codes Tools useful for Python + AI ChatGPT - https://chatgpt.com/ Claude AI - https://claude.ai/new ...