Thursday, April 17, 2025

ETL Pipeline Design (using Python)

 Scenario: Automating Sales Data Processing for a Retail Chain

Introduction:
A retail company operates multiple stores and an e-commerce platform, generating large amounts of sales data daily. Currently, they rely on manual reporting, leading to errors and delays. To solve this, an automated ETL (Extract, Transform, Load) pipeline is designed to centralize sales data for real-time analytics.


Step 1: Understanding Business Needs

The company aims to:

  • Data Integration: Combine sales data from multiple sources.
  • Data Cleaning & Transformation: Standardize formats and remove errors.
  • Sales Analytics: Store processed data in a data warehouse.
  • Real-Time Reporting: Enable dashboards for decision-makers.

Step 2: ETL Pipeline Architecture

  1. Extract (E) – Collect raw data from:
    • Store POS systems (SQL databases)
    • E-commerce platform (API, JSON, CSV files)
    • Third-party partners (Google Sheets, Excel, REST APIs)
  2. Transform (T) – Clean and standardize data:
    • Convert different formats into a unified schema
    • Handle missing values and remove duplicates
    • Apply business rules (e.g., currency conversion, product categorization)
  3. Load (L) – Store processed data in a Data Warehouse (e.g., Amazon Redshift, Snowflake, Google BigQuery) for reporting.

Step 3: ETL Pipeline Implementation in Python

1. Extract Data from Multiple Sources

import pandas as pd 

# Extract from SQL database (store POS sales)

store_sales = pd.read_sql("SELECT * FROM store_sales", connection) 

# Extract from CSV (e-commerce sales)

ecom_sales = pd.read_csv("ecommerce_sales.csv") 

# Extract from API (third-party partners)

import requests

response = requests.get("https://api.salesplatform.com/data")

partner_sales = pd.DataFrame(response.json())

2. Transform Data (Cleaning & Standardization)

# Standardizing column names

ecom_sales.rename(columns={"total_price": "sales_amount"}, inplace=True)

partner_sales.rename(columns={"price": "sales_amount"}, inplace=True) 

# Merging all sales data into one DataFrame

sales_data = pd.concat([store_sales, ecom_sales, partner_sales], ignore_index=True) 

# Handling missing values

sales_data.fillna({'sales_amount': 0}, inplace=True)

 # Converting date format

sales_data['sale_date'] = pd.to_datetime(sales_data['sale_date'])

3. Load Data into a Data Warehouse

from sqlalchemy import create_engine

 # Connect to a PostgreSQL Data Warehouse

engine = create_engine("postgresql://user:password@warehouse:5432/retail_db")

 # Load transformed data into warehouse

sales_data.to_sql("sales_data", engine, if_exists="replace", index=False)

Outcome: The ETL pipeline automates data ingestion, cleaning, and storage for real-time analytics.


Step 4: Data Flow Diagram for ETL Pipeline

       +----------------+       +----------------+       +----------------+

       | Store POS Data |       | E-Commerce CSV |       | Partner API    |

       +----------------+       +----------------+       +----------------+

               |                          |                           |

               |                          |                           |

               v                          v                           v

       +--------------------------------------------------------------+

       |                       Extract (E)                           |

       +--------------------------------------------------------------+

                                   |

                                   v

       +--------------------------------------------------------------+

       |                  Transform (T) - Data Cleaning              |

       |   - Standardization   - Handling Missing Data               |

       |   - Data Merging      - Business Rule Application           |

       +--------------------------------------------------------------+

                                   |

                                   v

       +--------------------------------------------------------------+

       |                  Load (L) - Data Warehouse                   |

       |    (Amazon Redshift / Snowflake / Google BigQuery)           |

       +--------------------------------------------------------------+

                                   |

                                   v

       +--------------------------------------------------------------+

       |       Business Intelligence (Power BI, Tableau, Looker)      |

       +--------------------------------------------------------------+

Insight: This pipeline ensures fast, error-free, and centralized sales data processing for better decision-making.


Step 5: Business Impact of the ETL Pipeline

Implementing an automated ETL pipeline enables:

80% Faster Data Processing – Automates daily sales reporting. Reduced Data Errors – Cleans and standardizes data automatically. Real-Time Analytics – Provides live sales insights for decision-makers. Improved Business Decisions – Optimized inventory, pricing, and marketing.


Interview Engagement (Closing Statement)

"This scenario demonstrates how a well-designed ETL pipeline transforms raw retail sales data into business intelligence insights. Would you like me to expand on scalability using Apache Airflow or Spark for big data processing?"

 

No comments:

Post a Comment

Python using AI

  Python using AI - Prompts & Codes Tools useful for Python + AI ChatGPT - https://chatgpt.com/ Claude AI - https://claude.ai/new ...